

A Machine Learning Approach to Study v_e^{127} I (p, n) 127 Xe

ID:13

Peibo. An for the COHERENT Collaboration **Duke University**

Motivation

An inclusive measurement of the cross section of the electron neutrino charged-current (cc) interactions on ¹²⁷I will help study the quenching of g_A , the axial-vector coupling constant, which determines the rate of neutrinoless double beta decays. At the Los Alamos Meson Production Facility (LAMPF), an exclusive measurement was made but with a large statistical error. To make an inclusive and more accurate measurement, a 185 kg NaI[Tl] prototype was deployed by the COHERENT collaboration. To reduce the major background, cosmic rays, a machine learning model based on a convolutional neural network (CNN) is being developed.

Neutrinos at the SNS

- COHERENT's detectors (right figure above) are deployed at the Spallation Neutron Source (SNS) to utilize the intense pulsed source of neutrinos it produces.
- The pulsed nature of the beam allows for improved background rejection.

LEFT: Simulated energy spectra of neutrino produced by the SNS. RIGHT: Simulated timing of neutrinos produced by the SNS [1].

NaIνE-185

- NaIvE is a 185 kg NaI[T1].
- One of its purposes is to measure the charged-current neutrino cross section on ¹²⁷I (* indicates possible excited states).

$$^{127}I + \nu_e \rightarrow ^{127}Xe^* + e^-$$

Equipped with Steel shielding and cosmic ray vetoes to further reduce the overall backgrounds and increase the fiducial volume of the detector.

simulations.

Beam-off muons.

investigation.

Discrepancy under

Simulations

- $v_e^{127} I(\mathbf{p}, \mathbf{n})^{127} Xe$
- MARLEY [3] and G4 simulations.
- EM (lepton+ γ).
- Total (quenched NR + EM).
- 3 B(GT) sources.

Convolutional Neural Network

- Convolutional neural network (CNN).
- Event energy displays shown on the right as visualization of particles with topological patterns and input of CNN.
- Trained, validated and tested with simulations.

- The confusion matrix of the net is shown on the left.
- 77% of the cc signals are tagged correctly.
- 22% of muons are also tagged as cc.

References and Acknowledgement

- [1] D. Akimov,., et al. (COHERENT Collaboration), arXiv:1509.0872, 2015
- [2] https://nuclear.llnl.gov/simulation/main.html
- [3] http://www.marleygen.org/index.html

This work is supported in part by U.S. DOE grant no. DE-FG02-97ER41033.

